
Computers and Mathematics with Applications 84 (2021) 277–295

a

b

c

m
a
r
s

a
s
f
h
e
a
l

(
i

Contents lists available at ScienceDirect

Computers andMathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

KSPHPDDMand PCHPDDM: Extending PETScwith advanced
Krylovmethods and robustmultilevel overlapping Schwarz
preconditioners
Pierre Jolivet a,∗, Jose E. Roman b, Stefano Zampini c
CNRS, IRIT–ENSEEIHT, Toulouse, France
Universitat Politècnica de València, València, Spain
King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

a r t i c l e i n f o

Article history:
Received 29 July 2020
Received in revised form 27 December 2020
Accepted 1 January 2021
Available online 22 January 2021

Keywords:
Krylov methods
Domain decomposition preconditioners
Distributed-memory parallel computing

a b s t r a c t

Contemporary applications in computational science and engineering often require the
solution of linear systems which may be of different sizes, shapes, and structures.
The goal of this paper is to explain how two libraries, PETSc and HPDDM, have been
interfaced in order to offer end-users robust overlapping Schwarz preconditioners and
advanced Krylov methods featuring recycling and the ability to deal with multiple right-
hand sides. The flexibility of the implementation is showcased and explained with
minimalist, easy-to-run, and reproducible examples, to ease the integration of these
algorithms into more advanced frameworks. The examples provided cover applications
from eigenanalysis, elasticity, combustion, and electromagnetism.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Computational science and engineering today enjoys unprecedented opportunities to transform the way society solves
any of its most urgent technological problems through predictive simulations. At the heart of simulations are robust
nd scalable solution algorithms. The efficient production of applications requires a rich ecosystem of state-of-the-art
eusable libraries from which domain specialists can benefit [1]. In this paper, we focus on the interoperability of two
uch libraries.
On the one hand, PETSc [2,3], the Portable and Extensible Toolkit for Scientific computation, is a well-established,

ctively developed software from the community. It may be used to efficiently discretize partial differential equations and
olve algebraic linear or nonlinear systems of time-dependent equations. Among its strengths, it offers many advanced
eatures regarding preconditioning and tailored matrix formats, and it can interact with third-party libraries, such as
ypre [4] for linear solvers, TetGen [5] for mesh generation, p4est [6] for adaptive mesh refinement, to cite a few. The
xtensibility and robustness of the framework convinced computational scientists to use PETSc as one of the discretization
nd/or algebraic backend in many different higher-level projects, see https://www.mcs.anl.gov/petsc for a comprehensive
ist.

On the other hand, HPDDM [7], the High-Performance unified framework for Domain Decomposition Methods
HPDDM) is a much smaller project focusing on robust and scalable domain decomposition preconditioners and advanced
terative methods [8] which can efficiently deal with linear systems with multiple right-hand sides, i.e., block iterative
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methods, and when there is a recurrence of varying coefficient matrices and right-hand sides, i.e., recycling iterative
methods.

Here, we describe the integration of the HPDDM solvers suite consisting of advanced iterative methods and robust
omain decomposition preconditioners into PETSc. The design principles of the interface are showcased considering
inimalist and easy-to-run examples, with a focus on fulfilling reproducibility requirements as advocated by the
ssociation for Computing Machinery https://www.acm.org/publications/policies/artifact-review-badging, as well as to
ase the integration of these algorithms into more advanced frameworks and facilitate the analysis and comparison of
erformance results [9].
Fruits of the proposed enhancement are discussed for applications from SLEPc [10], the Scalable Library for Eigenvalue

roblem computations, an add-on library that extends PETSc with classes for linear and nonlinear eigenvalue problems,
s well as with tools to facilitate the use of shift-and-invert spectral transformations.
The paper is divided in two main parts. Section 2 introduces the interface to recycling and block Krylov methods

KSPHPDDM) and discusses the readiness of the PETSc library with respect to block Krylov methods. Different applications
from eigenanalysis are also provided. Section 3 introduces the suite of robust multilevel overlapping Schwarz methods
(PCHPDDM) with examples from linear and nonlinear partial differential equations. Eventually, concluding remarks are
provided in Section 4.

All PETSc keywords and options are typeset in typewriter font, these are public and documented at https://www.
mcs.anl.gov/petsc/petsc-master/docs. Codes not already available in other public repositories are available at https:
//github.com/prj-/jolivet2020petsc. In Appendix, a short guide to build the required set of libraries for running these
codes is provided.

2. Advanced Krylov methods in PETSc: KSPHPDDM

2.1. Related work

Krylov subspace methods are widely used in numerical linear algebra for solving linear systems of equations because
of their memory efficiency [11,12]. They mainly rely on matrix–vector operations such as multiplications or transpose
multiplications and, for robust convergence when dealing with challenging high-dimensional systems, on the application
of appropriate preconditioners. PETSc, as of version 3.14.0, already offers 44 different types of Krylov methods within
the KSP base class. Some of the most used types are KSPGMRES, KSPCG, or KSPBCGS, which respectively implement
the generalized minimal residual method [13] (GMRES), conjugate gradient [14] (CG), or biconjugate gradient stabilized
method [15] (BCGS).

Because Krylov methods may need long-term recurrences to mitigate round-off errors during the generation of
subspaces, it is common to introduce a restart parameter in order to control their memory consumption and the
volume of global communications needed when orthonormalizing a candidate basis vector. Such restarts may hinder
convergence of iterative methods, and even introduce convergence plateaus. Recycling techniques have been introduced
to attenuate these effects. On the one hand, PETSc implements the loose GMRES [16] (LGMRES) and the deflated
GMRES [17,18] (DGMRES) as KSPLGMRES and KSPDGMRES. However, neither handle variable preconditioning, unlike
KSPFGMRES or KSPGCR which respectively implement the flexible GMRES [19] (FGMRES) and the generalized conjugate
residual method [20] (GCR). Furthermore, KSPDGMRES does not support complex arithmetic. Moreover, extending the
recycling capabilities of such methods to sequence of linear systems with smoothly varying coefficient matrices and right-
hand sides is not trivial. On the other hand, HPDDM offers support for the generalized conjugate residual method with
inner orthogonalization and deflated restarting [21] (GCRODR), which does not suffer from the aforementioned limitations.

Another important aspect of Krylov methods is their ability to deal with multiple right-hand sides simultaneously.
Block Krylov methods [22] are designed for solving linear systems AX = B, where X and B are tall-and-skinny matrices
with k ≥ 1 columns. Such methods, while having higher arithmetic intensities, generate larger subspaces and typically
converge in fewer iterates. These methods are not currently offered in PETSc and they are less frequently implemented
in general purpose libraries because they require somehow more involved kernels such as matrix–matrix multiplication,
instead of matrix–vector product, and may involve different inner-product realizations [23]. Still, systems with multiple
right-hand sides are ubiquitous, e.g., in tomography [24], data analytics [25], eigensolvers [26], geophysics [27], quantum
chromodynamics [28], and optimization with time-dependent partial differential equations as constraints.

Trilinos [29] is another well-known software for scientific computing and it provides iterative methods through its
Belos package [30]. Although having PETSc and Trilinos interoperate is possible, there is currently no KSP interface to
Belos. Furthermore, some of the Krylov methods implemented in HPDDM and discussed in Section 2.2, are not available
in Belos.

2.2. Interfacing HPDDM Krylov methods in PETSc

In this section, we provide details of the interface between HPDDM Krylov methods and the various PETSc classes. It
is assumed that the right-hand sides, and consequently the solutions, are always dense vectors or matrices.
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KSPHPDDM, the interface between HPDDM Krylov methods and PETSc, is automatically registered since PETSc version
.12 when configuring PETSc with the extra flag --download-hpddm. HPDDM linear solvers can be selected using the
ommand line option -ksp_type hpddm, or programmatically via KSPSetType(ksp, KSPHPDDM). Then, the following
rylov methods can be accessed:

• pseudo-block GMRES or flexible GMRES [19];
• pseudo-block CG or flexible CG [31];
• pseudo-block GCRODR or flexible GCRODR [32];
• block GMRES or flexible GMRES [27], with deflation at each restart;
• block CG [33];
• breakdown-free block CG [34], with deflation at each iteration;
• block GCRODR or flexible GCRODR, with deflation at each restart.

hile being mathematically equivalent to their ‘‘standard’’ counterparts, the pseudo-block variants fuse together multiple
imilar operations like matrix–vector products to achieve higher arithmetic intensity, or to decrease the number of global
ynchronizations needed for scalar products.
HPDDM Krylov methods may be selected using the options -ksp_hpddm_type (gmres|cg|gcrodr|bgmres|bcg|

fbcg|bgcrodr|preonly), or programmatically by using KSPHPDDMSetType(ksp,KSPHPDDMType). Preconditioning
ariants can be specified via -ksp_hpddm_variant (left|right|flexible) to select whether the preconditioner is
pplied on the left, on the right, or if it cannot be represented as a linear operator. In this latter case, the preconditioner
s always applied on the right, except for the conjugate gradient methods BCG, BFCG, and BFBCG, that only handle left
reconditioning. It is also possible to set the preconditioning side through the more common PETSc option -ksp_pc_side
left|right). In addition, convergence monitoring with the KSPMonitor interface is fully supported, as well as the
pecification of customized convergence testing via the KSPSetConvergenceTest callback.
Recycling Krylov methods try to extract convergence information by solving a small standard or a generalized dense

igenproblem at the end of each cycle or when convergence is reached, and then reuse it appropriately for subsequent
olves [35–37]. Such deflation subspaces, stored as dense tall-and-skinny matrices, can be accessed with KSPHPDDMGet-
eflationSpace. User-defined deflation subspaces can also be specified via KSPHPDDMSetDeflationSpace.
To fully support HPDDM solvers, in version 3.14.0 of PETSc, we added interface routines for solving systems with

ultiple right-hand sides, KSPMatSolve(ksp, X, Y), and to apply preconditioners, PCMatApply(pc, X, Y). Both input X
nd output Y matrices are currently limited to be dense tall-and-skinny matrices. With KSPHPDDM, (pseudo-)block Krylov
ethods will be used. Instead, when no specialized implementation is available, PETSc will perform the solution phase

n a column by column fashion. Furthermore, a function KSPSetMatSolveBlockSize is also provided to decompose a
ingle large block of column vectors into multiple sub-blocks. KSPMatSolve is then called repeatedly until all sub-blocks
re traversed. Similar considerations apply to the underlying calls to PCMatApply and MatProductNumeric. This was
nspired by MUMPS [38] option ICNTL(27).1

While solving linear systems, possibly with multiple right-hand sides, HPDDM will repeatedly call the following PETSc
outines:

• MatMult(A, x, y) for y = Ax;
• MatMatMult(A, X , MAT_REUSE_MATRIX, PETSC_DEFAULT, Y )2 for Y = AX;
• PCApply(M, x, y) to apply a preconditioner to x, i.e., for y = M−1x;
• PCMatApply(M, X , Y ) for Y = M−1X;

The rest of the operations are performed directly inside HPDDM. Specifically, within Krylov methods using the Arnoldi
process, or when recycling is requested, one has to compute QR factorizations of tall-and-skinny dense matrices to
orthonormalize candidate basis vectors. Such operations are performed using the CholQR algorithm [39], or via the
(modified) Gram–Schmidt method. These orthonormalization variants can be selected at runtime with the option -
ksp_hpddm_qr (cholqr|mgs|cgs). For Hessenberg matrices generated by the Arnoldi process, it is common to update
their QR decomposition using Givens rotations [12]. For block Hessenberg matrices, Householder reflectors are used
instead [40].

For matrix–matrix products, there are currently specialized implementations for the following MatTypes:

• MATAIJ: standard sequential or parallel sparse matrix, based on compressed sparse row format;
• MATSEQBAIJ: block sparse matrix, based on block compressed sparse row format;
• MATSEQSBAIJ: symmetric block sparse matrix stored in upper triangular form;
• MATSHELL: user-defined matrix;
• MATNEST: block-defined matrix with nested submatrices;
• MATAIJCUSPARSE: sequential or parallel sparse matrix, offloaded to a NVIDIA GPU using cuSPARSE [41].

1 http://mumps.enseeiht.fr/doc/userguide_5.3.3.pdf, section 6.1.
2 or MatProductNumeric(Y ) with PETSc 3.14.0 and above.
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The following preconditioners have specialized implementations for dealing efficiently with multiple vectors:

1. PCKSP: embedded Krylov method;
2. PCMAT: matrix multiplication;
3. PCH2OPUS: hierarchical matrices [42,43];
4. PCHPDDM: see Section 3;
5. PCASM and PCGASM: overlapping Schwarz methods;
6. PCBJACOBI: block Jacobi;
7. PCLU or PCCHOLESKY: exact LU or Cholesky factorization;
8. PCILU or PCICC: incomplete LU or Cholesky factorization.

One appealing feature of domain decomposition-like preconditioners (items 4–6) is that they most often rely on exact or
inexact factorizations (items 7 and 8) as subdomain solvers. In these cases, it is possible to access the so-called factored
matrix F via PCFactorGetMatrix, and then call MatMatSolve(F , X , Y ) to take advantage of blocked forward eliminations
and backward substitutions from the various factorization packages interfaced with PETSc. In the case of a sparse matrix,
this strategy is possible with: MUMPS [38], SuiteSparse [44], MKL PARDISO or CPARDISO [45], and SuperLU [46] or
SuperLU_DIST [47]. For the case of a dense matrix: ScaLAPACK and Elemental [48] are supported. Future work will consider
extending the multigrid framework PCMG, as well as other preconditioning classes to increase arithmetic intensity of the
preconditioner application phase for blocks of right-hand sides.

2.3. Applications and numerical results

2.3.1. Reproducibility of the results from Parks et al. [21]
Alongside the paper introducing GCRODR [21], a MATLAB implementation was provided and is since then available.3 It

comes with a sequence of ten ‘‘linear systems from a finite element fracture mechanics problem constructed by Philippe
H. Geubelle and Spandan Maiti’’. The goal of this paragraph is to explain how the results can be reproduced with PETSc
and KSPHPDDM: the matrix files used are available at https://gitlab.com/petsc/datafiles/-/tree/master/matrices/hpddm/
GCRODR while the driver code is part of the PETSc test suite and available at https://www.mcs.anl.gov/petsc/petsc-
master/src/ksp/ksp/tutorials/ex75.c.html. In order to check the correctness of the KSPHPDDM interface, the following tests
are performed:

• in MATLAB, unpreconditioned GCRODR(40, 20), ICC(0) left-preconditioned GCRODR(40, 20), and Jacobi right-
preconditioned GCRODR(40, 20);

• in PETSc with no preconditioning and no restart GMRES(∞) KSPGMRES;
• in PETSc with KSPHPDDM, all of the above.

The notation GCRODR(n, m) indicates a restart after n iterations and a recycling subspace of dimension m. In all of the
cases, convergence is declared when the initial unpreconditioned residual is reduced by 10 orders of magnitude. Except
for the right-preconditioned GCRODR, these tests are the same as the ones from the original GCRODR paper [21]. All PETSc
tests are performed using four MPI processes and can be launched using the following command lines.

$ mpirun -n 4 ./ex75 -ksp_converged_reason -pc_type none -ksp_rtol 1e-10 -ksp_gmres_restart 40 \
-ksp_type hpddm -ksp_hpddm_type gcrodr -ksp_hpddm_recycle 20 \
-load_dir ${DATAFILESPATH}/matrices/hpddm/GCRODR
$ mpirun -n 4 ./ex75 -ksp_converged_reason -redundant_pc_type icc -ksp_rtol 1e-10 \
-ksp_type hpddm -ksp_hpddm_type gcrodr -ksp_gmres_restart 40 -ksp_hpddm_recycle 20 \
-load_dir ${DATAFILESPATH}/matrices/hpddm/GCRODR -pc_type redundant

$ mpirun -n 4 ./ex75 -ksp_converged_reason -pc_type jacobi -ksp_rtol 1e-10 -ksp_gmres_restart 40 \
-ksp_type hpddm -ksp_hpddm_type gcrodr -ksp_hpddm_recycle 20 \
-ksp_pc_side right -load_dir ${DATAFILESPATH}/matrices/hpddm/GCRODR

$ mpirun -n 4 ./ex75 -ksp_converged_reason -pc_type none -ksp_rtol 1e-10 -ksp_gmres_restart 500 \
-ksp_type hpddm -load_dir ${DATAFILESPATH}/matrices/hpddm/GCRODR

The iteration numbers needed to reach convergence are gathered in Fig. 1. The cases and (resp. and ) reproduce
igure 4.2 in [21], while cases and partially reproduce Figure 4.3.

.3.2. Performance of primitives for block Krylov methods
The readiness of PETSc, as of version 3.14.0, is now discussed when it comes to delivering efficient implementations

f the core matrix–matrix multiplication needed by block Krylov methods and when a restart occurs in recycling Krylov
ethods.
In particular, we consider the first three sequential matrix types from Section 2.2, namely MATSEQAIJ, MATSEQBAIJ,

nd MATSEQSBAIJ. Their distributed memory counterparts, e.g., MATMPIAIJ, rely on the sequential implementations, with

3 https://www.sandia.gov/~mlparks/GCRODR.zip.
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Fig. 1. Number of iterations needed to converge for various configurations as originally tested by Parks et al. [21]. Note that the numbers of iterations
eeded by KSPHPDDM match with the respective MATLAB or PETSc reference implementation.

ach process storing two such matrices, one with local rows and columns, and another with local rows and ‘‘nonlocal’’
olumns. To keep this study succinct, we only evaluate the performance of the sequential implementations, which can
elp in drawing conclusions for the intraprocess performance of the parallel formats. For this reason, from now on, we
rop the SEQ substring. The performance of the multiplication primitives of the three aforementioned types will also

be compared against those obtained with the MKL inspector–executor sparse BLAS routines [45], using a single OpenMP
thread. There is an ongoing effort to better integrate these routines in PETSc, but at the time of writing, direct calls to the
MKL were used.

For benchmarking, we first discretize the Poisson equation on a cube with trilinear finite elements and obtain a matrix
of dimension one million. Though the numerical values of A are of no interest here, the sparsity pattern is rather common
nd frequently encountered when discretizing partial differential equations. We then generate a random symmetric dense
-by-b matrix T , for b ∈ {1, 3, 6}, and the matrix A = A ⊗ T is assembled into all three formats described above, using a
lock size of b for the block formats. The performance of the MatProductNumeric operation is evaluated for tall-and-
kinny dense matrices with a varying number of columns N ∈ {2, 8, 16, 32, 64}. For the single column case N = 1, the
atMult operation is used. All results have been obtained using double-precision arithmetic and 32-bit integers. The
caled efficiency measured in GFLOP per second is reported with respect to the baseline MATAIJ implementation with
= 1 in Fig. 2, where performances have been averaged over five consecutive product operations. They can be reproduced

y using the mini-app MatProduct.c from https://github.com/prj-/jolivet2020petsc and any input MATAIJ stored in
inary format, here using the default name binaryoutput, available at http://jolivet.perso.enseeiht.fr/binaryoutput.

$ mpicc MatProduct.c -O3 -I${PETSC_DIR}/${PETSC_ARCH}/include -I${PETSC_DIR}/include \
-L${PETSC_DIR}/${PETSC_ARCH}/lib -lpetsc -o MatProduct

$ mpirun -n 1 ./MatProduct -f binaryoutput -log_view \
-bs 1,3,6 -N 1,2,8,16,32,64 -type aij,aijmkl,baij,baijmkl,sbaij,sbaijmkl

Some conclusions may be drawn:

• with a block size of 1, top plot b = 1 in Fig. 2, using any type but MATAIJ is counterproductive when N > 1,
see and , even when using the MKL, see and . With 8 or more columns, the performance of MATAIJ
plateaus and the efficiency reaches approximately 200%, while the performance of the MKL primitives stagnate at
around 175%, see . For the single column case, MATSBAIJ and MATAIJMKL deliver slightly better performances;

• for block sizes lower than or equal to 5, loops for matrix–vector and matrix–matrix multiplications are unrolled by
hand for block formats. This yields rather disappointing performance, except for MATAIJ, see in middle plot
b = 3, and its 350% efficiency, even with a moderate number of columns. For block formats and , given the
small value of b, it could be beneficial to switch to optimized libraries for small matrices, e.g., LIBXSMM [49]. In fact,
MKL implementation for block formats is here clearly outperforming PETSc, see and ;

• for block sizes larger than 5, block entry multiplication with PETSc block formats is performed using ?gemv or ?gemm
operations. For MATAIJ in the bottom plot corresponding to b = 6, the efficiency quickly caps near 400% for
N ∈ {8, 16, 32, 64}, while reaching 500% for large number of columns for the block formats, see and for
N = 64. With these numbers of columns, PETSc and MKL perform similarly.

he mini-app is then used to benchmark intranode performance of matrix–matrix multiplications, either with multiple
penMP threads, or by offloading the operation to a NVIDIA GPU and using cuSPARSE [41] as interfaced in PETSc.

$ export OMP_NUM_THREADS=20 && export MKL_NUM_THREADS=20
$ mpirun -n 1 ./MatProduct -f binaryoutput -log_view \
-bs 1,3,6 -N 1,2,8,16,32,64 -type aijmkl,baijmkl,sbaijmkl,aijcusparse
281
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Fig. 2. Performance of the matrix–matrix multiplication for different sparse matrix formats.

Fig. 3. Performance of the matrix–matrix multiplication as implemented in PETSc using intranode parallelism.

Results reported in Fig. 3 have been scaled with respect to the baseline implementation MATAIJMKL with N = 1. They
ave been obtained on a single node of Jean Zay, a system composed of 261 nodes with two 20-core Intel Xeon Gold
248 clocked at 2.5GHz and four NVIDIA Tesla V100 SXM2. Neither transfers between host and device nor time spent
n mkl_sparse_optimize have been taken into account. For the sake of completeness, the performance of the matrix–
ector multiplication with MATAIJMKL and different numbers of threads is also reported in Fig. 4. Clearly, it is not advised
o use the full socket to perform this type of workload for such small sparse matrices and skinny dense matrices. However,
hese results help in drawing a fair comparison between a full CPU socket and a GPU device.

The CPU configuration which reaches the highest percentage of peak is MATSBAIJMKL with b = 3 and N = 64,
rightmost middle plot in Fig. 3, with approximately 63 GFLOP/s. This format is not yet available in PETSc, but it is handled
by the mini-app. Still, it is less than 1% of peak for an Intel Xeon Gold 6248. On the GPU, MATAIJCUSPARSE with b = 6
nd N = 64, rightmost bottom plot in Fig. 3, performs at around 306 GFLOP/s, about 4% of peak for an NVIDIA Tesla V100
282
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Fig. 4. Scalability of MatMult with MATAIJMKL and different number of threads.

XM2. Future work may consider using interlaced layouts for storing the dense right-hand sides and extend the current
ETSc functionality in order to maximize performance while maintaining interface flexibility and the user friendliness of
he library.

.3.3. Linear stability analysis
In this section, we apply recycling Krylov methods in the context of linear stability analysis and consider the solution

f the following generalized eigenvalue problem:

J(qb)x = λ

[
M 0
0 0

]
x, (1)

here J is the Jacobian of the incompressible steady-state Navier–Stokes equation evaluated using a given base flow

b =

[
ub
pb

]
and M is the discretization of the mass matrix on the space of velocities. The mini-app employed for the

umerical results is built on top of FreeFEM [50] and it is available at https://github.com/prj-/moulin2019al. Interested
eaders are referred to [51] for more details and for larger runs.

There are different methods to compute the eigenvalues of Eq. (1) near a complex-valued shift σ . In this paragraph
e consider a Krylov–Schur method [52], which, for interior eigenvalues, relies on spectral transformations and on the
olution of successive linear systems such as:(

J(qb) − σ

[
M 0
0 0

])
xi = bi, (2)

hich, in SLEPc, are parameterized using the -st_ prefix. In this work, the above linear system is preconditioned using
modified augmented Lagrangian approach [51,53]
The effectiveness of subspace recycling is shown for finding the 5 eigenpairs closest to the shift σ = 10−6

+ 0.6i for a
flow past a cylinder at Reynolds 100. Results can be reproduced using the following four commands. We note here that
the first two commands are merely used to generate the base flow qb with a SNES, a PETSc object used to solve nonlinear
roblems, using a continuation method on the Reynolds number.

$ mpirun -n 4 FreeFem++-mpi Nonlinear-solver.edp -Re 50 -v 0
$ mpirun -n 4 FreeFem++-mpi Nonlinear-solver.edp -Re 100 -v 0
$ mpirun -n 4 FreeFem++-mpi Eigensolver.edp -Re 100 -v 0 -st_ksp_rtol 1.0e-4 \
-st_ksp_type fgmres -st_ksp_gmres_restart 200 -st_ksp_converged_reason

$ mpirun -n 4 FreeFem++-mpi Eigensolver.edp -Re 100 -v 0 -st_ksp_rtol 1.0e-4 \
-st_ksp_type hpddm -st_ksp_gmres_restart 200 -st_ksp_converged_reason \
-st_ksp_hpddm_variant flexible -st_ksp_hpddm_recycle 10 -st_ksp_hpddm_type gcrodr

The Krylov–Schur algorithm converges in six outer iterations (restarts), with a total of 46 inner solves Eq. (2). Recycling
of Krylov subspaces with KSPHPDDM provides algorithmic speedup by lowering the number of iterations per inner solve,
as reported in Fig. 5, from 80 with KSPFGMRES to 45. A similar speedup can be observed in terms of runtime, with the
time spent for the solution of the eigenvalue problem being reduced from 25.1min to 17.5min. These timings, and all
that follow, have been obtained on Irène, a system composed of 1656 nodes with two 24-core Intel Xeon Platinum 8168
clocked at 2.7GHz.

2.3.4. Blocking inside SLEPc
The implementations of the locally optimal block preconditioned conjugate gradient [26] (LOBPCG) and the contour in-

tegral spectrum slicing method [54] (CISS) in SLEPc were previously not using blocking when applying the preconditioner
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Fig. 5. Number of inner iterations for systems Eq. (2) with or without recycling.

r solving linear systems. In version 3.14.0, these solvers have been adapted to employ KSPMatSolve and PCMatApply. In
the case of LOBPCG, which is a purely blocked method, all steps were already implemented as block operations, except the
applications of the preconditioner, which undermined the benefits of blocking. The performance of LOBPCG implemented
in SLEPc as EPSLOBPCG is studied using three different preconditioners:

• PCASM: one-level overlapping Schwarz method with one level of overlap and exact Cholesky factorizations in each
subdomain;

• PCHPDDM: multilevel overlapping Schwarz method, see Section 3;
• PCGAMG: algebraic multigrid method [55].

More details on these solvers are given in the next section where focus is put on preconditioning rather than Krylov
methods. We note here that only PCASM and PCHPDDM currently handle blocking, see the list Section 2.2, and that PCHPDDM
and PCGAMG have lower contraction factors than the cheaper alternative PCASM.

As a testbed, we consider the following generalized eigenvalue problem on a three-dimensional cube:

−∇ · (κ∇u) = λu.

This continuous equation is discretized with third-order Lagrange finite elements using FreeFEM. The script blocking-
slepc.edp available at https://github.com/prj-/jolivet2020petsc can be used for reproducibility. The following timings
and convergence histories have been obtained on 2304 processes of Irène, for solving a problem of dimension 7.46 · 107.

By default, SLEPc applies at most 5 iterations of GMRES on each column of a so-called set of active columns. Since
the option -eps_lobpcg_blocksize 40 is used for computing 20 eigenpairs, the size of the set varies between 40 to
1. This size corresponds to the number of right-hand sides that will be solved for throughout LOBPCG iterations. Instead
of using KSPGMRES, which does not handle blocking, KSPHPDDM is used, with the pseudo-block GMRES. Thus, assuming
the size of the set of active columns is 40, one LOBPCG iteration performs at most 5 pseudo-block GMRES iterations with
40 vectors simultaneously, using MatProductNumeric and PCMatApply, instead of doing at most 40 × 5 successive
GMRES iterations, using MatMult and PCApply.

Results are gathered in Table 1. In the first row, the numbers of outer LOBPCG iterations are reported with the three
different inner preconditioners mentioned above. On the one hand, PCASM is known to yield a preconditioned operator
whose condition number grows as the number of subdomains, here processes, increases. Thus, the number of outer
iterations is higher than with PCHPDDM or PCGAMG since the inner solves are not converging to meaningful solutions
in just 5 iterations. On the other hand, both multilevel preconditioners perform similarly, with a minimal difference in
the number of outer iterations. The second and third rows record the number of times PCApply and PCMatApply are
called. Since PCGAMG does not handle blocking, at each pseudo-block GMRES iteration, PCApply is called for each active
olumn separately. PCASM and PCHPDDM handle blocking, so they only rely on PCMatApply. In the fourth row, the time
pent setting up the preconditioners is given. PCASM is extremely cheap but not very robust numerically, while both
multilevel preconditioners have a similar setup time. The time spent in the full eigensolver is reported in the last row.
Clearly, having both a KSP and a PC which can efficiently deal with multiple vectors is mandatory to achieve reasonable
erformance with such an outer solver that heavily relies on blocking.
The script available at https://github.com/prj-/jolivet2020petsc may be used to solve the same eigenproblem using

PSCISS by providing the additional command line argument -eps_type ciss. However, this eigensolver is mostly
uited for finding interior eigenpairs, whereas the left-most part of the spectrum, closest to 0 for a symmetric positive
efinite problem, is here sought. In this scenario, EPSCISS is not a suitable solver and for fairness, its algorithmic
erformance is not reported, but the options from the script can be readily used for problems where it is an appropriate
hoice. We finally note that blocking support is also available and tested in SLEPc for EPSSUBSPACE since version 3.14.0.
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Table 1
Performance of EPSLOBPCG with three different inner preconditioners: PCASM and PCHPDDM,
which utilize PCMatApply, and PCGAMG, which utilizes PCApply.

PCASM PCHPDDM PCGAMG

# of outer iterations 54 14 15
PCApply – – 4049
PCMatApply 378 98 –
PCSetUp (s) 2.9 21.6 26.5
EPSSolve (s) 265.7 121.6 391.8

3. Robust multilevel overlapping Schwarz preconditioners: PCHPDDM

3.1. Related work

Domain decomposition methods are, alongside multigrid methods, one of the dominant paradigms for defining efficient
nd robust preconditioners in modern large-scale applications dealing with partial differential equations. There are many
onographs on domain decomposition methods [56–61].
Basic one-level methods such as the block Jacobi and the (overlapping) additive Schwarz method are implemented in

ETSc as PCBJACOBI and PCASM respectively, with some additional customization [62] available for PCASM. However, none
f these methods provide automatic support for a coarse-level solver, which is mandatory to obtain algorithmic scalability
ith large numbers of processes. Furthermore, PETSc provides non-overlapping domain decomposition methods. PCNN

mplements a basic balancing Neumann–Neumann method [63], while more advanced preconditioning techniques are
vailable with PCBDDC [64], including adaptive selection of primal constraints [65], support for H(curl) [66] and H(div) [67]
onforming finite elements, and isogeometric analysis [68]. For multigrid, PCMG provides a unified framework for geomet-
ic or algebraic preconditioners, which is used for the implementation of the smoothed-aggregation PCGAMG [55]. There
re also interfaces to other well-known multigrid packages such as PCHYPRE [4] or PCML [69] from Trilinos. Of course,
here are many other available domain decomposition preconditioners, either accessible through high-level libraries other
han PETSc, e.g., FROSch [70] in Trilinos, or as stand-alone packages, e.g., BDDCML [71] or FEMPAR-BDDC [72].

HPDDM implements the same one-level overlapping Schwarz methods as PETSc as well as optimized Schwarz
ethods [73], which may be used in PETSc with PCSetModifySubMatrices, see [74]. It also provides support for

defining robust two-level methods using the generalized eigenvalue problem on the overlap (GenEO) framework, for
finite elements [75,76] and boundary elements [77]. Results in this work present the first high-level access to GenEO
from PETSc and its composable solver infrastructure [78]. We note that GenEO has been recently implemented in other
libraries as well [79].

3.2. Interfacing HPDDM overlapping Schwarz methods in PETSc

PCHPDDM, the interface between HPDDM overlapping Schwarz methods and PETSc, is automatically registered since
PETSc version 3.12 when configuring PETSc with the extra flag --download-hpddm --download-slepc. It is then
possible to select the corresponding PC using the command line option -pc_type hpddm, or the routine PCSetType(pc,
CHPDDM).
In this section, we are interested in constructing a preconditioner for a given coefficient matrix A. Without user

ntervention, PCHPDDM is strictly equivalent to PCASM. That is, if A is distributed among N processes, the action of the
preconditioner M−1 is:

M−1
=

N∑
i=1

R̃T
i (RiART

i )
−1Ri, (3)

where {Ri}
N
i=1 are restriction operators that act on a global vector and return a local vector on each process, possibly with

some overlap. {R̃i}
N
i=1 are the same operators except that coefficients on the overlap are set to 0 [62]. The action of each

{RiART
i }

−1
i can be parameterized through a local KSP. When A is the discretization of a linear partial differential operator

L on a domain Ω , it is extremely common to exhibit parallelism by distributing Ω on N processes, possibly with some
overlap, and to construct the {Ri}

N
i=1 so that they map global unknowns to unknowns local to each process.

In addition to the local operators {RiART
i }

N
i=1, GenEO needs users to supply the local unassembled matrices {Åi}

N
i=1,

also known as Neumann matrices, representing the discretization of L on the extended local subdomain with overlap,
endowed with natural boundary conditions. In the case of the one-dimensional Poisson equation with homogeneous
Dirichlet boundary conditions discretized using trilinear finite elements, an explicit representation of these operators
is given Fig. 6 for a two-domain decomposition.

With extra Neumann information at hand, it is then possible to enrich the original one-level preconditioner from Eq. (3)
using a spectral coarse grid built in the following way:
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Fig. 6. Notation and basics of overlapping Schwarz methods.

1. have SLEPc solve the local generalized eigenvalue problem concurrently:

Åiyi = λiR̃iRT
i (RiART

i )RiR̃T
i yi; (4)

2. retrieve the νi smallest eigenpairs {yij , λij}
νi
j=1 and assemble a local deflation dense matrix Wi =[

R̃iRT
i yi1 · · · R̃iRT

i yiνi

]
;

3. define a global deflation matrix P =
[
RT
1W1 · · · RT

NWN
]
and a new two-level preconditioner using the Galerkin

product of A and P:

M ′−1
additive = P

(
PTAP

)−1
PT

+

N∑
i=1

R̃T
i (RiART

i )
−1Ri. (5)

ote that {R̃iRT
i }

N
i=1 defines a partition of unity, i.e.,

N∑
i=1

RT
i R̃iRT

i Ri = I.

uch a construction of a two-level method yields a preconditioner with which it is possible to bound the condition number
f the preconditioned operator. Thus, the convergence rate of a preconditioned Krylov method such as the conjugate
radient can be guaranteed a priori.
While step #3 is common to most domain decomposition or multigrid preconditioners, HPDDM takes advantage of

he special block sparse structure of the deflation matrix P . Moreover, the size of the coarse operator PTAP is much lower
han the size of A, and coarsening is much more aggressive than when using algebraic or geometric multigrid methods.
t is thus natural to remap the coarse operator on a subset of the processes used to decompose the original matrix A. In
PDDM, the coarse operator is computed and redistributed simultaneously. Interested readers are referred to the paper
escribing the technical details of the implementation [7]. Note that similar techniques have been proven beneficial for
ther types of solvers in PETSc [80].
In order to use GenEO from PETSc, the auxiliary operators {Åi}

N
i=1 and the corresponding local to global map of degrees

f freedom, see Fig. 6, can be provided using the routine PCHPDDMSetAuxiliaryMat. In special cases where the matrix
as been constructed using the PETSc discretization infrastructure, the relevant information is automatically computed by
ETSc. Fig. 7a (resp. Fig. 7b) is an example of a non-overlapping (resp. overlapping) decomposition using a non-conforming
rid with DMPLEX [81]. The mesh has been constructed internally by DMPLEX using a random pattern of non-conforming
:1 refinements and a space-filling curve distribution by p4est [6]. The required elements needed to properly assemble
he Neumann operators in a conforming way are pictured with a lighter color. Other DMTypes, including user-defined,
ay be supported by implementing the proper DMCreateNeumannOverlap callback. Support for the structured grid

nfrastructure (DMDA) could be easily added.
With the local matrix pencils available, new options are automatically registered such as

pc_hpddm_levels_1_eps_nev or -pc_hpddm_levels_1_eps_threshold, which may be used to customize the
igenpairs SLEPc will compute in step #2. The default -eps_nev value is 20, i.e., the dimension of the coarse space
s 20 × N under the assumption that all concurrent SLEPc solves converge.

For performance, it is better to compute the same number of eigenvectors on each process, since in this case, the coarse
perator will be assembled using symmetric or general blocked matrix formats. With usually large block sizes, this has
onsequent impacts on memory, floating-point, and message passing performances. In addition, standard eigensolvers
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Fig. 7. Automatic generation of overlapping subdomains when using a DMPLEX. For clarity, only four subdomains, one of which is disconnected, are
colored.

such as EPSKRYLOVSCHUR from SLEPc, cannot inexpensively evaluate the exact number of eigenpairs in a given interval
of R+. Instead, it is often more efficient to provide an upper bound on the number of eigenpairs.

The option -pc_hpddm_coarse_p can be used to provide the size of the subcommunicator that will be used
to remap the coarse operator. With the default value of 1, the coarse matrix PTAP is centralized on a single pro-
cess. The action of the inverses in Eq. (5) can be parameterized through the -pc_hpddm_coarse_ksp_type and
-pc_hpddm_levels_1_ksp_type options respectively.

3.2.1. Coarse corrections customization
Some other parameters may be adjusted to define how the one-level preconditioner and the coarse-grid operator inter-

act. Besides the additive correction shown in Eq. (5), end-users may select more numerically efficient corrections [82,83]
as:

M ′−1
deflated = Q + M−1 (I − AQ ) (default)

M ′−1
balanced = Q + (I − AQ )M−1 (I − AQ ) ,

with Q = P
(
PTAP

)−1 PT and M−1 defined in Eq. (3). This is parameterized using the option -pc_hpddm_coarse
_correction (deflated|additive|balanced) or the routine PCHPDDMSetCoarseCorrectionType. All of the cor-
rection formulas can be applied to either a single vector or a block of multiple vectors optimally. Indeed, the one-level
preconditionerM−1 is applied with either PCApply or PCMatApply, and the restriction–correction–interpolation operator
Q is applied in a block fashion in HPDDM, and not column by column.

3.2.2. Extension of the GenEO framework
The local generalized eigenvalue problems Eq. (4) can also be adjusted. In addition to the local unassembled Neumann

matrices {Åi}
N
i=1, users can prescribe additional local operators {Bi}

N
i=1, defined on the overlapping decomposition, via

the routine PCHPDDMSetRHSMat(pc, Bi). In the case of local matrices with optimized Robin transmission conditions, the
following generalized eigenvalue problems, called GenEO-2 in the literature [84], are then solved in each subdomain:

Åiyi = λiBiyi.

This may be useful when dealing with nearly indefinite systems, e.g., nearly incompressible elasticity or the system
of Stokes. Indeed, for such equations, one needs to compute a large number of eigenvectors from the classical GenEO
eigenproblem Eq. (4) to generate a robust preconditioner. GenEO-2 alleviates this phenomenon. In the case where the
local operators {Bi}

N
i=1 are the discrete mass matrices on the subdomain interfaces, the so-called Dirichlet-to-Neumann

coarse operator is constructed. This has proven to be efficient for solving the heterogeneous Helmholtz equation [85].
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3.2.3. Multilevel extension
In the previous sections, it was shown how to supply the required information to PCHPDDM in order to build robust two-

evel overlapping domain decomposition preconditioners. Since the dimension of the coarse operator linearly depends on
he number of subdomains of the fine level decomposition, switching to a multilevel scheme may alleviate the increasing
ost of solving coarse linear systems. A multilevel extension of the GenEO framework has been recently proposed [86],
ith the advantage that the multilevel hierarchy can be automatically constructed without any additional information

rom the user.
PCHPDDM follows the same numbering of PCBDDC: the finest level is always numbered with 1, and the level index

ncreases as the hierarchy is traversed, up until the coarsest level, whose solver options are prefixed by coarse_. In
rder to register an additional level l′ = l + 1, the following conditions must be met at level l:

• there must be more than one subdomain;
• at least one local eigenvector must be computed per coarse subdomain.

or example, using N = 16 subdomains on the finest level, the options
-pc_hpddm_levels_1_eps_threshold 0.4 -pc_hpddm_coarse_p 8

ill define a two-level method with the coarse operator being distributed among 8 processes, assuming that there is
lobally enough λi in Eq. (4) smaller than the prescribed threshold 0.4. Similarly, the options
-pc_hpddm_levels_1_eps_nev 10 -pc_hpddm_levels_2_p 8
-pc_hpddm_levels_2_eps_nev 10 -pc_hpddm_coarse_p 2

ill define a three-level method with the second level distributed among 8 processes, while the coarsest level will be
uilt using 10 eigenvalues per subdomain from the second level and remapped onto 2 processes. Additional examples for
he solver customization are provided in Section 3.3

.2.4. PCHPDDM for non-overlapping domain decomposition
Because of the intrinsic nature of balancing domain decomposition methods, PCNN and PCBDDC must be supplied with

MatIS which stores local unassembled matrices and local to global mappings. These local matrices are equivalent to the
Åi}

N
i=1 defined Section 3.2, assuming the domain decomposition is without overlap, see for example Ω1 and Ω2 from Fig. 6

in a finite element context. Since the assembled form of these operators can be reconstructed, it is possible to obtain the
Dirichlet operators {RiART

i }
N
i=1 from Section 3.2 as well. All tools needed by the GenEO framework are thus readily available.

Note however that one-level overlapping Schwarz methods are known for converging slowly when there is no overlap.
The proposed methodology is not strictly equivalent to the BDD-GenEO method [87], in which local Schur complements
on subdomain interfaces are computed explicitly, and then used in concurrent dense generalized eigenvalue problems.

3.3. Applications and numerical results

3.3.1. System of elasticity
We first report on solving the three-dimensional system of linear elasticity with highly heterogeneous elastic modulus.

Its strong formulation is given by:

div σ (u) + f = 0 in Ω,

u = 0 on ΓD,

σ (u) · n = 0 on ΓN .

(6)

The physical domain Ω is a beam of dimensions [0, 6] × [0, 1] × [0, 1]. The Cauchy stress tensor σ is given by Hooke’s
law: it can be expressed in terms of Young’s modulus E and Poisson’s ratio ν,

σij(u) =

{
2µεij(u) i ̸= j,
2µεii(u) + λdiv(u) i = j,

where

εij(u) =
1
2

(
∂ui

∂xi
+

∂uj

∂xj

)
, µ =

E
2(1 + ν)

, and λ =
Eν

1 − 2ν
.

ΓD is the subset of the boundary of Ω corresponding to x = 0. ΓN is defined as the complementary of ΓD with respect to the
boundary of Ω . Eq. (6) is discretized using trilinear finite elements resulting in 593× 106 unknowns with approximately
45 nonzero coefficients per row in the discrete coefficient matrix. The physical domain Ω is decomposed in 13,824
subdomains using the automatic graph partitioner ParMETIS [88]. There are heterogeneities due to jumps in E and ν.
The following discontinuous piecewise constant values are considered: (E1, ν1) = (2 × 1011, 0.25) in blue regions, while
E2, ν2) = (107, 0.45) in red regions, see Fig. 8. The code used to produce these results was borrowed from the original
aper about the multilevel extension of GenEO [86] and it is available at https://github.com/prj-/aldaas2019multi.
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Fig. 8. Deformed geometrical configuration of a 3D clamped beam subject to gravity. The striped plane in the background shows a cut of the resting
configuration with the jumps in the coefficient E1 = 107 and E2 = 2 × 1011 , aligned with those of ν.

The following preconditioners are compared:

1. PCGAMG;
2. PCHPDDM with an exact coarse solver;
3. PCHPDDM with inexact coarse solvers using GenEO multilevel extension.

The flexible GMRES is used and customized with the options -ksp_gmres_modifiedgramschmidt -ksp_gmres_
restart 50 -ksp_type fgmres. The options specific to each solver described above are given below.

# cf. item 1
-pc_type gamg
-prefix_push pc_gamg_
-threshold 0.03
-square_graph 4
-sym_graph true
-asm_use_agg true
-repartition true
-prefix_pop
-prefix_push mg_levels_
-pc_asm_overlap 0
-sub_pc_type cholesky
-prefix_pop
-prefix_push mg_coarse_
-pc_type redundant
-redundant_pc_type cholesky
-prefix_pop

# cf. item 2
-pc_type hpddm
-prefix_push pc_hpddm_
-prefix_push levels_1_
-pc_type asm
-eps_nev 40
-sub_pc_type cholesky
-sub_pc_factor_mat_solver_type mumps
-st_pc_factor_mat_solver_type mumps
-prefix_pop
-prefix_push coarse_
-p 24
-pc_factor_mat_solver_type mkl_cpardiso
-prefix_pop
-define_subdomains
-has_neumann
-prefix_pop

By default, the coarse problem in PCHPDDM is solved using an exact LU or Cholesky factorization, in this case using
24 processes and MKL CPARDISO. Switching to an inexact solver using the multilevel extension of GenEO, cf. item 3, is
straightforward.

# cf. item 3
-prefix_push pc_hpddm_levels_2_
-p M
-ksp_type gmres
-ksp_rtol 1.0e-2
-ksp_pc_side right
-pc_type asm
-eps_nev 80
-sub_pc_type cholesky
-sub_pc_factor_mat_solver_type mkl_pardiso
-st_pc_factor_mat_solver_type mkl_pardiso
-prefix_pop
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Fig. 9. Convergence histories of PCGAMG and PCHPDDM for solving the 3D system of linear elasticity. For PCHPDDM, a comparison of the number of
nner coarse iterations is displayed when using an inexact method, cf. item 3.

In this third configuration, M is the number of subdomains used to define the second-level domain decomposition,
hich is an aggregation of first-level subdomains.
Considering the parametrization used for the PCHPDDM solvers, items 2 and 3 yield the same number of outer iterates.

n Fig. 9a, the convergence history of PCGAMG and PCHPDDM are reported. In Fig. 9b, the number of inner coarse iterations
re reported for various values of M . In the case of a two-level method (item 2) this number is equal to one and is thus
ot reported. Note that in this test case, PCGAMG is faster than all PCHPDDM alternatives. On the one hand, for PCGAMG,
he setup phase takes 70 s, while the solution phase requires 19 s. On the other hand, the fastest PCHPDDM configuration,
hich corresponds to the configuration with 256 second-level subdomains , requires 64 s to setup and 36 s for the
olution of the linear system. Out of the 64 s needed for PCHPDDM setup, 31 are spent in SLEPc EPSSolve for solving
enEO at each level but the coarsest. With respect to coarsening, PCGAMG has an operator complexity of 1.501, while for

PCHPDDM, it is 1.015.

3.3.2. Liouville–Bratu–Gelfand equation
The strong formulation of this nonlinear problem is given by:

−∇ · (κ∇u) − 6.2eu = 0, (7)

where κ is a heterogeneous coefficient distribution, see Fig. 10a. This equation may model the temperature distribution
in combustion models. Here, it is merely used to test PCHPDDM in the context of solving successive linearized equations .
The physical domain Ω is the unit cube. It is decomposed in 10,272 subdomains. Eq. (7) is discretized using second-
order Lagrange finite elements. The number of unknowns is 217 × 106, with approximately 29 nonzero coefficients
per row. It is solved using SNES, with PCHPDDM being the preconditioner for solving each linearized system, see
Fig. 10b.

The GenEO framework has seldom been used in the context of nonlinear problems, but here, it is shown that it can
solve the linearized equations from Eq. (7) in few iterates. There are two strategies to define the preconditioner:

• whenever the Jacobian is being updated in the SNESSetJacobian function, new unassembled Neumann matrices
at the current linearization point can be updated as well and supplied via PCHPDDMSetAuxiliaryMat

• by reusing the PCHPDDM hierarchy assembled when solving the first linearized system, using the SNESSetLagPre-
conditioner option.

Since the system is not too stiff here, both strategies lead to the same convergence history, which is displayed in Fig. 11a.
The complete set of options is given in Fig. 11b. In case the preconditioner is being rebuilt at each of the four linearization
steps, 81.1 s are spent in PCSetUp and 27.7 s in KSPSolve. Setting up the preconditioner only once is in this scenario
a compelling way of amortizing this cost. Results can be reproduced using the FreeFEM script bratu.edp available at
https://github.com/prj-/jolivet2020petsc.
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Fig. 10. Solving the Liouville–Bratu–Gelfand equation using SNESNEWTONLS and PCHPDDM.

Fig. 11. Numerical performance of PCHPDDM in a nonlinear context for solving the Liouville–Bratu–Gelfand equation. Default PETSc tolerances are
used: 10−5 decrease of relative residuals for linear solves, 10−8 decrease of function norms for nonlinear solves.

3.3.3. Using PCHPDDM as a coarse grid solver for PCBDDC
A last problem shows how one may switch between a multilevel BDDC solver to a two-level BDDC solver using

PCHPDDM for solving the coarse problem. The problem is generated using the MFEM [89] definite Maxwell example avail-
able at https://github.com/mfem/mfem/blob/master/examples/petsc/ex3p.cpp. The strong formulation of the continuous
problem is given by:

∇ × (∇ × E) + E = 0 in Ω,

E × n = (1 + 16π2)
[
sin 4πy sin 4πz sin 4πx

]T on ∂Ω.
(8)

It is discretized using first order Nédélec finite elements and PCBDDC is automatically customized to obtain a stable method
with these elements [66]. The number of unknowns is 5.6 × 106. The following command line options are used.

$ mpirun -n 512 ./ex3p -m ../../data/fichera.mesh -f 4 --petscopts rc_ex3p_bddc --nonoverlapping

The option file shows how PCHPDDM may be composed into PCBDDC.
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Fig. 12. MFEM example ex3p for solving the Fichera corner problem.

$ cat rc_ex3p_bddc
-ksp_type fgmres
-ksp_norm_type unpreconditioned
-ksp_rtol 1.0e-8

-prefix_push pc_bddc_
-use_deluxe_scaling
-levels 1
-adaptive_threshold 2.0
-coarsening_ratio 8

-neumann_pc_factor_mat_solver_type mumps
-dirichlet_pc_factor_mat_solver_type mumps
# continue on the right column

# continued from the left column
-prefix_push coarse_
-ksp_converged_reason
-ksp_type gmres
-ksp_max_it 100
-ksp_rtol 1.0e-1
-pc_type hpddm
-ksp_norm_type preconditioned
-prefix_push pc_hpddm_
-levels_1_pc_type asm
-levels_1_eps_nev 10
-levels_1_sub_pc_type cholesky
-coarse_pc_type cholesky
-prefix_pop
-prefix_pop
-prefix_pop

Deluxe scaling is used to build an adaptive second level with PCBDDC. On this second level with 16,284 unknowns, new
ubdomains are built by aggregating the coarse element matrices of 8 fine-level subdomains. The BDDC coarse problem
omposed of 512

8 = 64 subdomains is then solved using PCHPDDM, which itself builds another adaptive level using 10
local eigenvectors per subdomain. The coarsest level is aggregated on a single process and solved using an exact Cholesky
factorization. The magnitude of the electric field is plotted in Fig. 12a. The convergence history of the solver is shown
in Fig. 12b. The outer solver reaches the prescribed convergence tolerance in 17 iterations . The number of inner
terations for solving the BDDC coarse problem is reported as well .

4. Conclusion and perspectives

In this paper, we presented the interface between PETSc and HPDDM and discussed the new Krylov and overlapping
Schwarz methods, providing several numerical examples and describing various runtime options. Overall, the interface
paves the way for having recycling and block Krylov methods plus robust overlapping Schwarz methods using the GenEO
framework in PETSc.

Concerning PETSc, the infrastructure for dealing with blocks of vectors has been laid out. However, only a little fraction
of the built-in matrix types and preconditioners can currently handle them efficiently, and additional storage formats may
be considered to maximize performance.

Concerning SLEPc, we plan to implement new solvers or extend existing ones to further exploit block solve primitives,
for instance, block Krylov–Schur [90]. The current code for Arnoldi iterations would then handle block Arnoldi iterations,
and shift-and-invert solves would operate on the whole block instead of column by column.

Concerning HPDDM, its integration inside PETSc offers a much-needed flexibility compared to the standard imple-
mentation. Indeed, it is now possible to decide at runtime many solvers parameters that are instead determined at
compile-time in a stand-alone HPDDM implementation.
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The interface between PETSc and HPDDM has room for future improvements. First, HPDDM handles mixed-precision,
.g., using single-precision scalars for assembling coarse operators while using double-precision scalars at the fine level.
he topic of mixed-precision is under scrutiny for the next major overhaul of PETSc. Second, HPDDM does not handle GPU
fficiently currently, but the interface with PETSc provides a very thorough testbed with Mat and PC implementations that
o exploit GPU.
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ppendix. Code reproducibility

In order to reproduce the various results from this paper, a short how-to is provided in this appendix to get a minimalist
unctioning set of required libraries. First, PETSc version 3.14.2 can be downloaded at https://gitlab.com/petsc/petsc/-
archive/v3.14.2/petsc-v3.14.2.zip. While some adjustments may be needed to ensure that the proper MPI implementation
nd BLAS/LAPACK libraries are used by PETSc build system, the configure line should be somehow similar to:

./configure --download-hypre --download-metis
--download-slepc --download-hpddm --download-mfem
--with-scalar-type=real PETSC_ARCH=real-build

MFEM will then be available for reproducing results from Section 3.3.3. As a stand-alone library, PETSc can be used to
reproduce results from Sections 2.3.1 and 2.3.2. After building PETSc with real scalars, it must also be built with complex
scalars.

./configure --with-metis-dir=real-build
--download-slepc --download-hpddm
--with-scalar-type=complex PETSC_ARCH=complex-build

Eventually, one can download FreeFEM version 4.7-1 at https://github.com/FreeFem/FreeFem-sources/archive/v4.7-1.zip
and use the following configure line:

./configure --with-petsc=${PETSC_DIR}/real-build/lib
--with-petsc_complex=${PETSC_DIR}/complex-build/lib

After building FreeFEM, results from Sections 2.3.3, 2.3.4, 3.3.1 and 3.3.2 can be reproduced.
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