Pierre Jolivet

Welcome

I am a research scientist at CNRS. My host laboratory is LIP6, from Sorbonne Université.
I work in the field of high-performance computing (especially for the design of fast and robust solvers in computational sciences).
Topics of research: preconditioning, numerical linear algebra, scientific software…

Here is a list of software that I am developing:
I also (seldom) contribute to:

HPDDM

Contact

pierre @ joliv · et
+33 1 44 27 80 29
Sorbonne Université
LIP6, office 26/00-311
4 place Jussieu
75252 Paris Cedex 05
France

Selected publications

  1. J. E. Roman, F. Alvarruiz, C. Campos, L. Dalcin, P. J., A. Lamas Daviña. Improvements to SLEPc in releases 3.14–3.18. Submitted to ACM Transactions on Mathematical Software.
  2. S. P. V., V. Dolean, P. J., B. Robinson, J. D. Edwards, T. Kendzerska, A. Sarkar. Scalable computational algorithms for geo-spatial COVID-19 spread in high performance computing. Preprint.
  3. T. Roget, P. J., S. Méléard, M. Rera. Positive selection of senescence through increased evolvability: ageing is not a by-product of evolution. Preprint.
  4. H. Li, M. Yu, P. J., J. Alexandersen, T. Kondoh, K. Furuta, K. Izui, S. Nishiwaki. Large-scale level set-based topology optimization of lattice infill structures using a PDE-based filter. Submitted to Advances in Engineering Software.
  5. H. Al Daas, P. J., T. Rees. Efficient algebraic two-level Schwarz preconditioner for sparse matrices. Preprint (submitted to SIAM Journal on Scientific Computing).
  6. L. Audibert, H. Girardon, H. Haddar, P. J. Inversion of eddy-current signals using a level-set method and block Krylov solvers. Preprint (submitted to SIAM Journal on Scientific Computing).
  7. N. Bootland, V. Dwarka, P. J., V. Dolean, C. Vuik. Inexact subdomain solves using deflated GMRES for Helmholtz problems. Preprint (accepted for publication in Domain Decomposition Methods in Science and Engineering XXVI).
  8. H. Al Daas, P. J. A robust algebraic multilevel domain decomposition preconditioner for sparse symmetric positive definite matrices.
  9. H. Li, T. Kondoh, P. J., N. Nakayama, K. Furuta, H. Zhang, K. Izui, S. Nishiwaki. Topology optimization for lift–drag problems incorporated with distributed unstructured mesh adaptation.
  10. P.-H. Tournier, P. J., V. Dolean, H. S. Aghamiry, S. Operto, S. Riffo. Three-dimensional finite-difference & finite-element frequency-domain wave simulation with multi-level optimized additive Schwarz domain-decomposition preconditioner: a tool for FWI of sparse node datasets.
  11. H. Al Daas, P. J., J. A. Scott. A robust algebraic domain decomposition preconditioner for sparse normal equations. Public repository.
  12. H. Li, T. Kondoh, P. J., K. Furuta, T. Yamada, B. Zhu, H. Zhang, K. Izui, S. Nishiwaki. Optimum design and thermal modeling for 2D and 3D natural convection problems incorporating level set-based topology optimization with body-fitted mesh.
  13. H. Li, T. Kondoh, P. J., K. Wano, K. Furuta, T. Yamada, B. Zhu, K. Izui, S. Nishiwaki. Three-dimensional topology optimization of a fluid–structure system using body-fitted mesh adaption based on the level-set method.
  14. N. Bootland, V. Dolean, P. J., P.-H. Tournier. A comparison of coarse spaces for Helmholtz problems in the high frequency regime.
  15. J. Sierra, P. J., F. Giannetti, V. Citro. Adjoint-based sensitivity analysis of periodic orbits by the Fourier–Galerkin method.
  16. P. J., M. A. Badri, Y. Favennec. Deterministic radiative transfer equation solver on unstructured tetrahedral meshes: efficient assembly and preconditioning.
  17. H. Al Daas, L. Grigori, P. J., P.-H. Tournier. A multilevel Schwarz preconditioner based on a hierarchy of robust coarse spaces. Public repository.
  18. H. Li, T. Yamada, P. J., K. Izui, S. Nishiwaki. Full-scale 3D structural topology optimization using adaptive mesh refinement based on the level-set method.
  19. P. J., J. E. Roman, S. Zampini. KSPHPDDM and PCHPDDM: extending PETSc with advanced Krylov methods and robust multilevel overlapping Schwarz preconditioners. Public repository.
  20. F. Feppon, G. Allaire, C. Dapogny, P. J. Body-fitted topology optimization of 2D and 3D fluid-to-fluid heat exchangers.
  21. P. Marchand, X. Claeys, P. J., F. Nataf, P.-H. Tournier. Two-level preconditioning for h-version boundary element approximation of hypersingular operator with GenEO.
  22. M. A. Badri, Y. Favennec, P. J., B. Rousseau. Conductive–radiative heat transfer within SiC-based cellular ceramics at high temperatures: a discrete-scale finite element analysis.
  23. F. Feppon, G. Allaire, C. Dapogny, P. J. Topology optimization of thermal fluid–structure systems using body-fitted meshes and parallel computing.
  24. Y. Favennec, T. Mathew, M. A. Badri, P. J., B. Rousseau, D. Lemonnier, P. J. Coelho. Ad hoc angular discretization of the radiative transfer equation.
  25. J. Moulin, P. J., O. Marquet. Augmented Lagrangian preconditioner for large-scale hydrodynamic stability analysis. Public repository.
  26. M. A. Badri, P. J., B. Rousseau, Y. Favennec. Preconditioned Krylov subspace methods for solving radiative transfer problems with scattering and reflection.
  27. F. Mercier, Y. Michel, T. Montmerle, P. J., S. Gürol. Speeding up the ensemble data assimilation system of the limited area model of Météo-France using a block Krylov algorithm.
  28. P.-H. Tournier, I. Aliferis, M. Bonazzoli, M. De Buhan, M. Darbas, V. Dolean, F. Hecht, P. J., I. El Kanfoud, C. Migliaccio, F. Nataf, C. Pichot, S. Semenov. Microwave tomographic imaging of cerebrovascular accidents by using High-Performance Computing.
  29. F. Mercier, S. Gürol, P. J., Y. Michel, T. Montmerle. Block Krylov methods for accelerating ensembles of variational data assimilations.
  30. M. A. Badri, P. J., B. Rousseau, S. Le Corre, H. Digonnet, Y. Favennec. Vectorial finite elements for solving the radiative transfer equation.
  31. R. Haferssas, P. J., S. Rubino. Efficient and scalable discretization of the Navier–Stokes equations with LPS modeling.
  32. M. A. Badri, P. J., B. Rousseau, Y. Favennec. High performance computation of radiative transfer equation using the finite element method.
  33. R. Haferssas, P. J., F. Nataf. An additive Schwarz method type theory for Lions's algorithm and a symmetrized optimized restricted additive Schwarz method.
  34. R. Haferssas, P. J., F. Nataf. An adaptive coarse space for P.-L. Lions's algorithm and optimized Schwarz methods.
  35. P. J., P.-H. Tournier. Block iterative methods and recycling for improved scalability of linear solvers. Acceptance rate: 18% (82/446).
  36. S. Di Girolamo, P. J., K. D. Underwood, T. Hoefler. Exploiting offload-enabled network interfaces.
  37. V. Dolean, P. J., F. Nataf. An introduction to domain decomposition methods: algorithms, theory, and parallel implementation.
  38. R. Haferssas, P. J., F. Nataf. A robust coarse space for optimized Schwarz methods: SORAS-GenEO-2.
  39. S. Di Girolamo, P. J., K. D. Underwood, T. Hoefler. Exploiting offload enabled network interfaces. Best Paper Awardee at HotI ‘15.
  40. V. Dolean, P. J., F. Nataf, N. Spillane, H. Xiang. Two-level domain decomposition methods for highly heterogeneous Darcy equations. Connections with multiscale methods.
  41. P. J., F. Hecht, F. Nataf, C. Prud'homme. Scalable domain decomposition preconditioners for heterogeneous elliptic problems.
  42. P. J., F. Hecht, F. Nataf, C. Prud'homme. Scalable domain decomposition preconditioners for heterogeneous elliptic problems. Acceptance rate: 20% (92/457). Best Paper Finalist at SC13.
  43. P. J., F. Hecht, F. Nataf, C. Prud'homme. Overlapping domain decomposition methods with FreeFem++.
  44. P. J., V. Dolean, F. Hecht, F. Nataf, C. Prud'homme, N. Spillane. High-performance domain decomposition methods on massively parallel architectures with FreeFem++.
  45. S. Allassonnière, P. J., C. Giraud. Detecting long distance conditional correlations between anatomical regions using Gaussian graphical models.

Current teaching duties

Education

  1. HDR — Toulouse INP.
  2. Ph.D. in applied mathematics — Université de Grenoble. Link to thesis (8.9 MB).
  3. M.Sc. in Computational Science & Engineering — Ensimag, Grenoble.
  4. M.Sc. in applied mathematics — Université Joseph Fourier, Grenoble.